1-Alkyl-2-trifluoromethylaziridines: the bacisity and ring-opening reactions under the action of acids

N. M. Karimova,* Yu. L. Teplenicheva, A. F. Kolomiets, and A. V. Fokin

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation.

Fax: 007 (095) 135 5085

The basicity of 1-alkyl-2-trifluoromethylaziridines is -two orders of magnitude lower than that of non-fluorinated analogs. Aziridines are stable to H_2S and AcOH, but react with AcSH, HCl, HBr, H_2SO_4 , TsOH, and picric acid to give products of ring-opening.

Key words: 1-alkyl-2-trifluoromethylaziridines; reactivity, basicity.

Aziridines have been studied in detail, 1.2 but the properties of their fluorine-containing analogs are almost unknown, despite the large number of publications describing the synthesis of these compounds. 3-12 Most of the compounds of this series are chemically inert. Thus high thermal and chemical stability of 1-acyloxy-and 1-tosyloxy-2,2-bis(trifluoromethyl)aziridines has been reported. 13 Ring-opening reactions have been observed only for ethyl 3-perfluoroalkylaziridine-2-car-boxylate refluxed with HCI. 12

Previously, we developed a convenient preparative method for the synthesis of 1-alkyl-2-trifluoromethylaziridines according to Gabriel, by cyclization of N-alkyl-2-bromo-3,3,3-trifluoropropylamines, 14,15 which allows one to study the properties of this class of compounds. For example, it was shown that 2-trifluoromethylaziridines react vigorously with 40% HBr at low temperatures to form solely 2-bromo-1-trifluoromethylethylamines. 16

In the present work, the basicity of 1-alkyl-2-trifluoromethylaziridines (1) was determined and their ring-opening reactions under the action of acids were studied.

R = Me(a), Et(b), PhCH₂(c), cyclo-C₆H₁₁(d)

It turned out that the basicity of aziridines 1 measured by potentiometric titration in water is approximately two orders of magnitude lower than that of non-fluorinated aziridines² (p K_a and p K_b refer to dissociation of an aziridinium ion and protonation of aziridine, respectively):

Compound	pK_a	pK_b
12	5.72	8.28
1b	5.84	8.16
1c	5.69	8.31
1d	5.93	8.07

The low basicity of compounds 1a-d causes them to be less reactive than their non-fluorinated analogs in reactions with acids. Thus, unlike ordinary aziridines, 1,2 l-alkyl-2-trifluoromethylaziridines 1a-d do not react with H_2S in MeOH at after 1 day 20 °C even after the addition of acetic or trifluoroacetic acids as protonating agents.

Thioacetic acid, which is much stronger, reacted vigorously with aziridines 1 in the absence of a solvent to give ring-opening products in preparative yields. Thioacetates 2a,b,d were converted without isolation into aminothiol hydrochlorides 3a,b,d, and compounds 3a,b were oxidized with an ethanolic solution of I_2 to disulfides 4a,b.

1a,b,d
$$\xrightarrow{ACSH}$$
 F_3C \xrightarrow{SAC} $\xrightarrow{HC1}$ F_3C \xrightarrow{SH} $\xrightarrow{HNR \cdot HC1}$ 2a,b,d $\xrightarrow{I_2}$ $\left(F_3C$ $\xrightarrow{S-}\right)_2$ 4a,b

Under the action of 20% HCl, as in reactions with HBr (cf. Ref. 16), aziridines 1 form N-(2-chloro(bromo)-1-trifluoromethylethyl)alkylamines (5,6) in high yields.

The aziridine ring also opens easily under the action of other strong acids. Aziridine 1c reacts vigorously with 50% H₂SO₄ to give 2-benzylamino-3,3,3-trifluoropropyl alcohol (7c) following alkaline hydrolysis in 73% yield.

However, in an attempt to obtain aziridinium salts by the reaction of 1 with weak nucleophiles such as picric or toluene-p-sulfonic acids, we obtained only ring-opening products. Thus, in reactions with TsOH and picric acid, aziridine 1d is transformed into crystalline derivatives, toluenesulfonate 8d and picrate 9d in $\sim 80\%$ yields even at -70 °C.

8d: X = TsO**9d:** $X = (NO_2)_3C_6H_2O$

Aziridines 1 react with CF₃CO₂H and perchloric acid with the same ease, but the reaction products could not be isolated. AcOH, a relatively weak acid, does not react with aziridines 1, even after prolonged storage at 20 °C.

Experimental

¹H and ¹⁹F NMR spectra were recorded on a Bruker WP-200 SY spectrometer (200.12 and 188.31 MHz, respectively) with Me₄Si (¹H) as the internal standard and CF₃COOH (¹⁹F) as the external standard. The reaction conditions, yields, and characteristics of compounds 3-9 are given in Table 1. The parameters of the $^1\mathrm{H}$ and $^{19}\mathrm{F}$ NMR spectra are given in Table 2.

The potentiometric titration of aziridines 1a-d was performed at 298 ± 0.1 K according to a known procedure 17 using a Radelkis OP-211/1 pH-meter with a glass Radiometer G 202 C electrode and a calomel Radiometer K 401 electrode with a contact through porous ceramics. The electrode pair was calibrated with reference to buffer solutions. The concentration of the solution of aziridines studied was 10^{-3} mol L⁻¹, titration was performed with 0.02 M HCl, and the accuracy of pK determination was 0.03-0.06 units.

2-Cyclohexylamino-3,3,3-trifluoropropanethiol hydrochloride (3d). AcSH (2.28 g, 2.2 mL, 30 mmol) was added dropwise with stirring to aziridine 1d (5.79 g, 30 mmol). The mixture was kept at 20 °C for 1 h, then 20 mL of 20% HCl was added, and the mixture was refluxed under N_2 for 0.5 h. The solution was concentrated and a dry residue was reprecipitated from ethanol with ether.

Di(2-methylamino-3,3,3-trifluoropropyl) disulfide (4a). AcSH (2.28 g, 2.2 mL, 30 mmol) was added dropwise with stirring to aziridine 1a (3.75 g, 30 mmol). The mixture was kept at 20 °C for 1 h, treated with 25 mL of 10% HCl, and refluxed for 0.5 h. A 10% solution of I_2 in ethanol was added dropwise to the cooled mixture until negative test for the SH group in a reaction with sodium nitroprusside. The mixture was neutralized with a 10% aqueous solution of NaHCO₃, and the organic layer that formed was extracted with CHCl₃. The extract was dried with MgSO₄, the solvent was removed, and the residue was distilled.

Di(2-ethylamino-3,3,3-trifluoropropyl) disulfide (4b) was obtained analogously from aziridine 1b (5.56 g, 40 mmol) and AcSH (3.04 g, 3 mL, 40 mmol).

N-(2-Chloro-1-trifluoromethylethyl)ethylamine (5b). 20% HCl (7.3 mL, 40 mmol) was added dropwise with stirring at +5 °C to aziridine 1b (2.78 g, 20 mmol). After 10 min, an

Table 1. The characteristics of compounds 3-9

Com- pound	Yield (%)	B.p./°C (<i>p</i> /Torr)		Found Calculat	ed (%)		Molecular formula
		[M.p.]	С	Н	N	S	
3d	88	[157—158]	40.72 40.98	6.39 6.45	<u>5.11</u> 5.31	_	C ₉ H ₁₆ F ₃ NS·HCl
4a	60	125—127 (8)	30.43 30.38	4.48 4.43	_	<u>19.64</u> 20.25	$C_8H_{14}F_6N_2S_2$
4b	70	132—133 (10)	<u>35.11</u> 34.88	<u>5.32</u> 5.23		18.71 18.60	$C_{10}H_{18}F_6N_2S_2$
5b	80	40 (60)	33.85 34.19	<u>5.05</u> 5.12	7.58 7.97	_	C ₅ H ₉ ClF ₃ N
5đ	83	75 (10)	46.82 47.05	6.50 6.53	<u>5.87</u> 6.10	_	C ₉ H ₁₅ CIF ₃ N
6 d	85	95 (15)	<u>39.51</u> 39.41	<u>5.46</u> 5.47	<u>5.12</u> 5.11		C ₉ H ₁₅ BrF ₃ N
7c	73	[96]	<u>54.43</u> 54.79	<u>5.42</u> 5.48	<u>6.21</u> 6.39		$C_{10}H_{12}F_3NO$
8đ	80	[130]	<u>52.23</u> 52.60	<u>6.06</u> 6.02	<u>4.03</u> 3.83	_	$C_{16}H_{22}F_3NO_3S$
9 d	80	[200—202]	36.44 36.39	3.32 3.45	11.52 11.33	-	$C_{15}H_{17}F_3N_4O_7 \cdot 4H_2O$

Table 2. The ¹H and ¹⁹F NMR spectra of compounds 3-9

Com-	Solvent		δ ¹ H (<i>J</i> /Hz)		δ ¹⁹ F (J/Hz)	
pound		CH (m) CH ₂		Other signals		
3d	CD3OD	4.4	3.1 (dd, 1 H, $J = 14.8, 7.4$); 3.3 (dd, 1 H, $J = 14.8, 4.9$)	1.0-2.2 (m, 11 H, C ₆ H ₁₁); 3.4 (m, 1 H, NH); 2.6 (br.s, 1 H, SH)	-5.95 (d, 3 F, CF ₃ , $J = 6.6$)	
4a	CDCl ₃	3.35	2.8 (dd, 1 H, $J = 13.5, 5.9$); 3.2 (dd, 1 H, $J = 13.5, 2.9$)	1.5 (s, 1 H, NH); 2.6 (s, 3 H, CH ₃)	-3.4 (d, 3 F, CF ₃ , $J = 7.0$)	
4b	CDCl ₃	3.35	2.7 (m, 1 H); 3.05 (dd, 1 H, $J = 13.0, 2.9$)	1.0 (t, 3 H, CH ₃ , $J = 6.9$); 1.5 (br.s, 1 H, NH); 2.7 (m, 2 H, C $\underline{\text{H}}_2\text{CH}_3$)	-3.3 (d, 3 F, CF ₃ , $J = 6.0$)	
5Ъ	(CD ₃) ₂ CO	5.0	4.5 (dd, 1 H, $J = 12.0, 4.5$); 4.55 (dd, 1 H, $J = 12.0, 3.0$)	1.5 (t, 3 H, CH ₃ , $J = 7.5$); 2.0 (s, 1 H, NH); 3.5 (m, 2 H, CH ₂ CH ₃)	_	
5d	CD ₃ OD	4.7	3.9 (dd, 1 H, $J = 13.5$, 3.1); 4.0 (dd, 1 H, $J = 13.5$, 4.5)	1.0-2.0 (m, 11 H, C ₆ H ₁₁); 3.0 (m, 1 H, NH)	-6.5 (d, 3 F, CF ₃ , $J = 7.5$)	
6d	CDCl ₃	3.4	3.4 (m, 1 H); 3.6 (m, 1 H)	1.0-1.9 (m, 11 H, C ₆ H ₁₁); 2.6 (m, 1 H, NH)		
7e	CDCl ₃	3.2	3.6 (m)	2.5 (m, 1 H, NH); 3.9 (d, 2 H, CH ₂ Ph, $J = 6.45$); 5.1 (s, 1 H, OH); 7.3 (m, 5 H, C ₆ H ₅)	-5.0 (d, 3 F, CF ₃ , $J = 7.0$)	
8d	CD3OD	4.5	3.9 (m)	1.0-2.2 (m, 11 H, C ₆ H ₁₁); 2.4 (s, 3 H, C <u>H</u> ₃ C ₆ H ₄); 3.25 (s, 1 H, NH); 7.4 (m, 4 H, C ₆ H ₄)	-5.2 (d, 3 F, CF ₃ , $J = 7.0$)	
9d	CD3OD	4.9	3.5 (dd, 1 H, $J = 12.6, 9.3$); 3.7 (dd, 1 H, $J = 12.6, 5.0$)	1.1-2.2 (m, 11 H, C ₆ H ₁₁); 3.15 (s, 1 H, NH); 8.7 (s, 2 H, C ₆ H ₂)	_	

excess of a 10% aqueous solution of NaHCO₃ was added, and the organic layer was separated, dried with MgSO₄, and distilled.

N-(2-Chloro-1-trifluoromethylethyl)cyclohexylamine (5d) was obtained analogously from aziridine 1d (10 mmol) and 20% HCl (20 mmol).

N-(2-Bromo-1-trifluoromethylethyl)cyclohexylamine (6d) was obtained analogously from aziridine 1d (10 mmol) and 40% HBr (20 mmol).

2-Benzylamino-3,3,3-trifluoropropyl alcohol (7c). 50% H₂SO₄ (3.92 g, 20 mmol) was added dropwise with stirring at 0-5 °C to aziridine 1c (2.01 g, 10 mmol). The mixture was kept at 20 °C for 15 min, poured into 15 mL of water, and neutralized with NaHCO₃ (3.36 g, 40 mmol). The crystals that formed were filtered off, washed with water, and dried in air.

2-Cyclohexylamino-3,3,3-trifluoropropyl toluene-p-sulfonate (8d). A solution of TsOH· H_2O (1.9 g, 10 mmol) in 5 mL of ether was added dropwise at -70 °C to aziridine 1d (1.93 g, 10 mmol). The precipitate that formed was filtered off, washed with ether, and dried.

O-(2-Cyclohexylamino-2-trifluoromethylethyl)-2,4,6-trinitrophenol (9d) was obtained analogously from aziridine 1d (10 mmol) and pieric acid (15 mmol).

This work was financially supported by the Russian Foundation for Basic Research (Project No. 96-03-32884).

References

- 1. O. C. Dermer and G. E. Ham, Ethylenimine and Other Aziridines, Academic, New York—London, 1969, 68.
- P. A. Gembitskii, D. S. Zhuk, and V. A. Kargin, Khimiya etilenimina [The Chemistry of Ethyleneimine], Nauka, Moscow, 1966, 255 (in Russian).
- 3. F. Weygand, W. Stiglich, J. Venquel, and F. Fraunberger, Ber., 1966, 99, 19, 32.
- L. Knunyants and Yu. V. Zeifman, Izv. Akad. Nauk SSSR, Ser. Khim., 1967, 711 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1967, 16 (Engl. Transl.)].
- R. G. Kostyanovsky, J. J. Chervin, A. A. Fomichov, Z. E. Samojlova, C. N. Makarov, J. V. Zeifman, and B. L. Dyatkin, *Tetrahedron Lett.*, 1969, 46, 4021.
- A. V. Fokin, A. F. Kolomiets, and N. V. Vasil'ev, Usp. Khim., 1984, 53, 398 [Russ. Chem. Rev., 1984, 53 (Engl. Transl.).
- S. N. Osipov, A. F. Kolomiets, and A. V. Fokin, Izv. Akad. Nauk SSSR, Ser. Khim., 1988, 132 [Bull. Acad. Sci. USSR. Div. Chem. Sci., 1988, 37, 122 (Engl. Transl.)]; S. N. Osipov, A. F. Kolomiets, and A. V. Fokin, 6-th Regular Meeting of Soviet-Japanese Fluorine Chemists, Novosibirsk, 1989.
- Yu. V. Zeifman, E. M. Rokhlin, U. Utebaev, and I. L. Knunyants, Dokl. Akad. Nauk SSSR, 1976, 226, 1337 [Dokl. Chem., 1976 (Engl. Transl.)].

- O. G. Khomutov, V. I. Filyakova, and K. I. Pashkevich, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 282 [Russ. Chem. Bull., 1994, 43, 261 (Engl. Transl.)].
- K. Tanaka, M. Ohsuga, J. Sugimoto, J. Okafuji, and K. Mutsuhashi, J. Fluor. Chem., 1988, 39, 39.
- K. Quinze, A. Laurent, and P. Mison, J. Fluor. Chem., 1989, 44, 211.
- M. Haddach, R. Pastor, and J. Riess, *Tetrahedron Lett.*, 1990, 31, 1989.
- R. G. Kostyanovskii, G. K. Kadorkina, G. V. Shustov, and K. S. Zakharov, *Dokl. Akad. Nauk SSSR*, 1975, 221, 370 [Dokl. Chem., 1975 (Engl. Transl.)].
- Yu. L. Ignatova, N. M. Karimova, O. V. Kil'disheva, and I. L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 732 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 675 (Engl. Transl.)].
- Yu. L. Ignatova, N. M. Karimova, and I. N. Rozhkov, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 955 [Russ. Chem. Bull., 1994, 43, 900 (Engl. Transl.)].
- I. N. Rozhkov, N. M. Karimova, Yu. L. Ignatova, and A. G. Matveeva, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 279 [Russ. Chem. Bull., 1994, 43, 258 (Engl. Transl.)].
- S. Searles, M. Tampes, F. Block, and L. A. Quarferman, J. Am. Chem. Soc., 1956, 78, 4917.

Received June 25, 1996; in revised form February 10, 1997